

Утвержден 1ГГ.671231.017РЭ-ЛУ

ТРАНСФОРМАТОРЫ ТОКА ТШЛ-0,66-VI

Руководство по эксплуатации 1ГГ.671231.017РЭ

Настоящее руководство по эксплуатации (РЭ) содержит сведения о назначении, конструкции, характеристиках трансформаторов тока (далее - трансформаторы) ТШЛ-0,66-VI, изготавливаемых для внутрироссийских поставок, для атомных станций (АС) и указания, необходимые для правильной их эксплуатации.

1 Нормативные ссылки

1.1 В настоящем руководстве по эксплуатации использованы ссылки на следующие стандарты:

ГОСТ 8.217-2024 ГСИ. Трансформаторы тока. Методика поверки.

ГОСТ 9.014-78 ЕСЗКС. Временная противокоррозионная защита изделий. Общие требования.

ГОСТ 12.2.007.3-75 ССБТ. Электротехнические устройства на напряжение свыше 1000 В. Требования безопасности.

ГОСТ 3134-78 Уайт-спирит. Технические условия.

ГОСТ 7746-2015 Трансформаторы тока. Общие технические условия.

ГОСТ 8865-93 Системы электрической изоляции. Оценка нагревостойкости и классификация.

ГОСТ 10434-82 Соединения контактные электрические. Классификация. Общие технические требования.

ГОСТ 10877-76 Масло консервационное К-17.Технические условия.

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды.

ГОСТ 15543.1-89 Изделия электротехнические и другие технические изделия. Общие требования в части стойкости к климатическим внешним воздействующим факторам.

ГОСТ 23216-78 Изделия электротехнические. Хранение, транспортирование, временная противокоррозионная защита, упаковка. Общие требования и методы испытаний.

ГОСТ 28779-90 Материалы электроизоляционные твердые. Методы определения воспламеняемости под действием источника зажигания.

ГОСТ 30631-99 Общие требования к машинам, приборам и другим техническим изделиям в части стойкости к механическим внешним воздействующим факторам при эксплуатации.

ГОСТ 32137-2013 Совместимость технических средств электромагнитная. Технические средства для атомных станций. Требования и методы испытаний.

ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.

ГОСТ 33757-2016 Поддоны плоские деревянные. Технические условия.

ГОСТ CISPR 11-2017 Электромагнитная совместимость. Оборудование промышленное, научное, медицинское. Характеристики радиочастотных помех. Нормы и методы измерений.

ГОСТ IEC 61000-4-8-2013 Электромагнитная совместимость. Часть 4-8 Методы испытаний и измерений. Испытания на устойчивость к магнитному полю промышленной частоты.

РД 34.45-51-300-97 «Объем и нормы испытаний электрооборудования».

СТО 34.01-23.1-001-2017 Объем и нормы испытаний электрооборудования.

Правила технической эксплуатации электрических станций и сетей Российской Федерации.

Правила по охране труда при эксплуатации электроустановок (от 15.12.2020 г. № 903н).

Правила технической эксплуатации электроустановок потребителей.

Правила устройства электроустановок. Седьмое издание. Шестое издание.

НП-001-15 Общие положения обеспечения безопасности атомных станций.

НП-031-01 Нормы проектирования сейсмостойких атомных станций.

МП 59-26-2023 ГСИ. Трансформаторы тока шинные. Методика поверки.

2 Требования безопасности

- 2.1 При проведении всех работ должны выполняться правила техники безопасности, действующие на предприятии, эксплуатирующем трансформаторы.
- 2.2 При подготовке трансформаторов к монтажу, эксплуатации и при проведении технического обслуживания (электрических испытаний и других работ) должны выполняться «Правила устройства электроустановок», «Правила по охране труда при эксплуатации электроустановок» и дополнительные требования, предусмотренные настоящим разделом РЭ.

- 2.3 Требования безопасности при поверке трансформаторов по ГОСТ 8.217.
- 2.4 ВНИМАНИЕ: ПРИ ЭКСПЛУАТАЦИИ ТРАНСФОРМАТОРОВ НЕОБХО-ДИМО ИСКЛЮЧИТЬ РАЗМЫКАНИЕ ВТОРИЧНЫХ ОБМОТОК!
- 2.5 Если в процессе эксплуатации отпадает необходимость в использовании трансформаторов, их вторичная обмотка должна быть замкнута накоротко.
- 2.6 Вариант заземления вторичных обмоток определяется потребителем в соответствии со схемой вторичных присоединений трансформаторов.

3 Описание и работа трансформаторов

- 3.1 Назначение трансформаторов
- 3.1.1 Трансформаторы предназначены для передачи сигнала измерительной информации приборам измерения, защиты, автоматики, сигнализации и управления в электрических цепях переменного тока частотой 50 Гц на номинальное напряжение до 0,66 кВ включительно.

Трансформаторы встраиваются в распределительные устройства или экранированные токопроводы и не имеют собственной первичной обмотки, ее роль выполняет кабель или шина распределительного устройства, проходящие через внутреннее окно трансформаторов. Высоковольтная изоляция достигается за счет собственной изоляции кабеля или шины и воздушного зазора.

- 3.1.2 Трансформаторы предназначены для установки в комплектные распределительные устройства (КРУ) и являются комплектующими изделиями.
 - 3.2 Условия окружающей среды
- 3.2.1 Трансформаторы соответствуют группе условий эксплуатации M6 по ГОСТ 30631.
- 3.2.2 Трансформаторы изготавливаются в климатических исполнениях У2; У3 и УХЛ2, по ГОСТ 15150 и ГОСТ 15543.1.

Трансформаторы предназначены для эксплуатации в следующих условиях:

- высота установки над уровнем моря не более 1000 м. По согласованию с потребителем возможно изготовление трансформаторов для работы на высоте свыше 1000 м;
- верхнее значение температуры окружающего воздуха, с учетом перегрева воздуха внутри комплектной трансформаторной подстанции, 55 °C;
 - нижнее значение температуры окружающего воздуха при эксплуатации: минус 50 °C для климатических исполнения У2 и У3;

минус 60 °С - для климатического исполнения УХЛ2;

- относительная влажность, давление воздуха согласно ГОСТ 15543.1;
- окружающая среда невзрывоопасная, не содержащая пыли, химически активных газов и агрессивных паров в концентрациях, разрушающих металлы и изоляцию (атмосфера типа II по ГОСТ 15150);
 - рабочее положение трансформаторов в пространстве любое;
- трансформатор имеет литую изоляцию из эпоксидного компаунда класса нагревостойкости «В» по ГОСТ 8865 и класса воспламеняемости FH(ПГ) 1 по ГОСТ 28779;
- трансформаторы сейсмостойки при воздействии землетрясений интенсивностью 8 баллов по MSK-64 при уровне установки над нулевой отметкой до 70 м;
- трансформаторы, предназначенные для поставки на AC, соответствуют классу безопасности 3H по HП-001-15 и II категории сейсмостойкости по HП-031-01.
- 3.2.3 Трансформаторы соответствуют требованиям устойчивости к электромагнитным помехам при воздействии магнитного поля промышленной частоты по ГОСТ IEC 61000-4-8, установленным для группы исполнения IV по ГОСТ 32137.
- 3.2.4 Трансформаторы соответствуют нормам индустриальных радиопомех, установленным в ГОСТ ГОСТ CISPR 11 класс A, группа 1.
 - 3.3 Комплект поставки
 - 3.3.1 В комплект поставки входит:

трансформатор, шт. - 1;

детали для пломбирования вторичных выводов обмоток для измерения трансформатора, шт.:

крышка - 1;

винт 4-8-Ц - 1.

эксплуатационные документы, экз.:

паспорт (поставляется только для АС) - 1;

этикетка - 1;

руководство по эксплуатации (РЭ) - 1.

Примечание - На партию, поставляемую в один адрес, общее количество экземпляров РЭ может быть уменьшено до одного, но должно быть не менее трех экземпляров на партию в пятьдесят штук.

- 3.4 Технические характеристики
- 3.4.1 Основные технические характеристики приведены в таблице 1.

Таблица 1

	Значение для констр	уктивного исполнения
Наименование параметра	ТШЛ-0,66-VI-1-2; ТШЛ-0,66-VI-1-2В	ТШЛ-0,66-VI-2-2; ТШЛ-0,66-VI-2-2В
Номинальное напряжение, кВ	0	,66
Наибольшее рабочее напряжение, кВ	(),8
Номинальная частота переменного тока, Гц	4	50
Номинальный первичный ток, А	200, 300, 400, 500, 600, 750, 800, 1000, 1200	800, 1000, 1200; 1500; 2000; 2500
Номинальный вторичный ток, А	1	; 5
Количество вторичных обмоток		2
Класс точности вторичных обмоток по ГОСТ 7746: для измерений для защиты		5S; 0,5; 1 10P
Номинальная вторичная нагрузка вторичных обмоток*, $B \cdot A$,: для измерений при $\cos \phi = 1$ при $\cos \phi = 0.8$ (нагрузка индуктивно-активная) для защиты при $\cos \phi = 1$ при $\cos \phi = 1$ при $\cos \phi = 0.8$ (нагрузка индуктивно-активная)	3; 5; 10	2; 2,5 2; 15; 20 2; 2,5 2; 15; 20
Номинальная предельная кратность обмоток для защиты, не менее	См. таблицу 3	См. таблицу 5
Номинальный коэффициент безопасности приборов обмоток для измерений, не более,	См. таблицу 4	См. таблицу 6

Примечание - * Нижний предел вторичной нагрузки для классов точности 0.2S, 0.5S - $1~B\cdot A$.

3.4.2 Наибольший рабочий ток приведен в таблице 2.

Таблица 2

Наименование параметра			ŗ	Значени	не парам	иетра, А			
Номинальный первичный ток	200	300	400	500	600	750	800	1000	1200
Наибольший рабочий первичный ток	200	320	400	500	630	800	800	1000	1250

Окончание таблицы 2

Наименование параметра	Значение	параметра	ı, A
Номинальный первичный ток	1500	2000	2500
Наибольший рабочий первичный ток	1600	2000	2500

3.4.3 Значения предельной кратности обмоток для защиты, в зависимости от номинального первичного тока и номинальной вторичной нагрузки для ТШЛ-0,66-VI-1-2 и ТШЛ-0,66-VI-1-2В приведены в таблице 3.

Таблица 3

Номи- нальный	Номиналь-									гь втори рузке, Е							
вторич-	ный первичный	1		2	2	2.	,5		3	5	5	1	.0	1	5	2	0
ный ток, А	ток, А	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P
	200	3	2	2	0	1	7	1	5	10	-	10		6			
	250	2	5	1	8	1	6	1	5	1	0	9	_	U	-	5	-
	300	2		1		1			6	1		1	.0	8			
	400	2		2		1	_		8	1		1	.4	1	0	-	7
5	500	2		2		2			.0	1		1	.5	1			9
	600	2		2		2			2	1		1	.7		3		0
	750	2		2		2			2	1		1	.3	1	0		8
	800	2		1	4	2			2	1		1	.3		0		8
	1000	2		2		2			.3	2		1	.4	1			9
	1200	2	7	2	6	2	5	2	.3	2	1	1	.5	1	3	1	0
	200	2	4	1	7	1	4	1	3	Ģ)	4	-	3	_	2	
	250	2	7	1	9	1	6	1	5	1	0		6	4		3	-
	300	2	8	2	1	1	9	1	7	1.	2	,	7	4	4	3	
1	400	3	1	2	4	2	2	2	.0	1	5	9	9	(5	4	4
1	500	3	3	2	6	2	4	2	.3	1	7	1	.0	· ·	7	(6
	600	3		2		2		2	4	1	9	1	.2	Ç	9		7
	750	3		3		2			6	2		1	.4	1	0		8
	800	3		2		2			5	2		ì	.4		0		8
	1000	3	3	3	0	2	8	2	.7	2	2	1	.6	1	2	1	0

3.4.4 Значения коэффициентов безопасности приборов обмоток для измерений в зависимости от номинального первичного тока и номинальной вторичной нагрузки для ТШЛ-0,66-VI-1-2 и ТШЛ-0,66-VI-1-2В приведены в таблице 4.

Таблица 4

Номинальный	Номиналь- ный													ов обмоті З ·A, для						
вторичный	первичный		1			2		2,5		3		5		10		15			20	
ток, А	ток, А	0,2S	0,5S	0,5	0,2S	0,5S 0,5	0,2S	0,5S 0,5	0,2S	0,5S 0,5	0,2S	0,5S 0,5	0,2S	0,5S 0,5	0,2S	0,5S 0,	,5	0,2S	0,5S	0,5
	200	12			-	4	-	4	-	4	-	5								-
	250	13	(6	20	5	9	4	8	4	-	6	-		-	4		-	_	3
	300	11			19	3	8	5	0	5	6	4		4						3
	400							5		5	7		5			4	Ļ	-	3	3
5	500		7			6						4	5						4	
	600							6							-	4			-	
	750							O		6		5		4				_		4
	800		8			7								•		4	ļ			
	1000		O			,		7		7		6				•			4	
	1200					ī		,		,				5			_		•	
	200	12		<u>7</u>	-	5	_	_		_		_	_	5	_	5				
	250	13		8	10		9	5	8	5	-	5								
	300		8			- 6	-		-					-		_			_	
	400		9			7		6	4	6		_		5						
1	500					7		7			4	5			-	5				
	600		10			8		,	4	7				_			ļ			
	750					0		8		•	4	6		5		5			5	
	800				4	9			4	8						Č				
	1000		11					9				7								

3.4.5 Значения предельной кратности обмоток для защиты, в зависимости от номинального первичного тока и номинальной вторичной нагрузки для ТШЛ-0,66-VI-2-2 и ТШЛ-0,66-VI-2-2В приведены в таблице 5.

Таблица 5

Номиналь-	Номи- нальный				не м			•			me manes, npm meaningment extern men numpy extend 2 12, Alexandre 2 16 meetin										
вторичный	первич-		1	2	2	2	,5	3	3	;	5		10		15	2	20				
ток, А	ный ток, А	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P				
	800					1	.8	1	7	1	.4	1	0	7	-	6	-				
	1000	,	21	1	9	1	. 0	1	8	1	.5	1	1	:	3	,	7				
5	1200	2	21			1	.9	1	0	1	.6	1	2	1	0						
5	1500			2	0	1	.9	1	9	1	.7	1	3	1	1	9	9				
	2000	1	.7		1	6		1	۲	1	4			1	0		8				
	2500		-	16		1	.5	1	3	1	.4	1	1			9	9				
	800	2	25	2	2	2	20	2	0	1	.6			8	-	6	-				
	1000	2	26							1	.7		12		9		7				
1	1200	2	25	2	3	2	22	2	1	18		13		10		8					
	1500	2	23							1	. 0		14		11		10				
	2000	2	20	1	9	1	.8	1	7	1	.5		12		10		8				

Таблица 6

	Номи-						TT			rean de	1	- 5ana	TO 011		**50#0	n 061		77 1101							1
Номи-	наль-									_	фициен			_	_				_						
нальный	ный						не	оолее,	-	омин	альной	втори	чнои	нагруз	ке, В	•А, дл	ія клас		онро	сти					
вторич-	первич-		1			2			2,5			3			5			10			15			20	
ныи	ный		0.50	0.5	0.20	0.50	0.5	0.20	0.50	0.5	0.20	0.50	0.5	0.20	0.50	0.5	0.20	0.50	0.5	0.20	0.50	0.5	0.20	0.50	0.5
ток, А	ток, А	0,28	0,5S	0,5	0,2S	0,5S	0,5	0,2S	0,5S	0,5	0,2S	0,5S	0,5	0,2S	0,5S	0,5	0,2S	0,5S	0,5	0,2S	0,5S	0,5	0,2S	0,5S	0,5
	800		7	13		1	1	5		11			10			8			6		-	5			
	1000		10	,	(5	1	1	5		11	5		10	;	5	7		_		-	-	5
_	1200	7	13	3	6	12	2	(1	1	5	1	1	_	1/	0			/		3	6			
5	1500		14	4				6	12	2	6	12	2	3	10	U	5		8	5	,	7	-	(6
	2000		13			12			12			11			10			8			7			6	
	2500		13			12			12			11			10			9			8			7	
	800		7	15	6		12	6)	12	6		11			9			6		-	5			5
	1000					13	3	6	12	2	6)	12	5		10	:	5	7			6	•	-	3
1	1200	8	15	5	7	14	1	7	1,	2		12	2			10			8		5	6		5	
1	1500					12	+	/	1,	3	7	13	3	6	1	1	5		8			7	5	5	6
	2000		14			13			13			12	2	6	1.	1	<u> </u>		9	5		8	5		7
	2500		13			13			13			12			11			9			8		_	7	

3.4.7 Расчетные значения сопротивлений обмоток для измерений постоянному току трансформаторов тока ТШЛ-0,66-VI-1-2 и ТШЛ-0,66-VI-1-2В, приведенные к температуре 20 °C, указаны в таблице 7.

Таблица 7

<u> </u>																					
Номи-	Номи-				(вторичн										м,			
нальный	нальный					при н	юмина	льной вт	орично	ои на	груз	ке, В	·A, для	класс	ов точ	HOC'	ти				
вторич-	пальный первичный		1			2	4	2,5		3			5		10			15		20	
ный ток, А	ток, А	0,2S	0,5S	0,5	0,2S	0,5S 0,5	0,2S	0,5S 0,5	0,2S	0,5S	0,5	0,2S	0,5S 0,5	0,2S	0,5S 0,	5 (0,2S	0,5S 0,5	0,2S	0,5S	0,5
101, 11	200	0,064	0,0)43	_	0,043	_	0,043	_	0,03	36	_	0,036		0,053	+		0,037			
	250	0,079		05	0,079	0,05	-	0,05	-	0,0		-	0,045	-	0,066	_	_	0,066	-		-
	300	0,059		065	0,059	0,065	0,059	0,065	0,059	0,00		0,059	0,065		0,059			0,059			
	400					0,086						-	0,086	-	0,086		-	0,11	-	0,	11
5	500						0,108							0,16	0,108			0,16		-	
3	600		0,13 - 0,13 -																		
	750		0,16 - 0,16																		
	800								0,18										-	0	,18
	1000										0,22										
	1200									ī	0,26)									
	200	0,96		65	-	0,65	-	0,65	-	0,6		-	0,65	-	0,96		-	0,96		-	
	250	1,2		,81	1,2	0,81	1,2	0,81	1,2	0,8		-	0,81	-	1,2		-	1,2		-	
	300		1,0		-	1,0	-	1,0	-	1,0)	-	1,0		-			-		-	
	400						1,33							-	1,33			-		-	
1	500		1,66 - 1,66 -																		
	600		2,03 -																		
	750		2,54 2,77																		
	800		2,77																		
	1000		3,46																		

3.4.8 Расчетные значения сопротивлений обмоток для измерений постоянному току трансформаторов тока ТШЛ-0,66-VI-2-2 и ТШЛ-0,66-VI-2-2B , приведенные к температуре $20\,^{\circ}$ C, указаны в таблице 8.

Таблица8

аолица																								
Номи-	Номи-						Сог	роти	влени	е втор	ичных	обмо	тки Д	ки впр	мерен	ий по	стоян	ному	току,	Ом,				
нальный	наль-							при і	номин	ально	й втор	ичной	і́ нагј	рузке,	B ⋅A,	для	классо	в точ	ности					
вторич-	ный		1			2			2,5			3			5			10			15		2	0
ныи	первич- ный		0.70		0.00	0.50	o -	0.00		o -	0.00	0.70	^ -	0.20	0.50		0.20	0.50		0.00	0.70	^ -	0.00	^ -
ток, А	ток, А	0,2S	0,5S	0,5	0,2S	0,5S	0,5	0,28	0,5S	0,5	0,2S	0,5S	0,5	0,2S	0,5S	0,5	0,2S	0,5S	0,5	0,2S	0,5S	0,5	0,28 0,58	0,5
	800	0,	.12	0,13	0,	12	0,13	0	,12	0,13	0,1	2	0,13	0,1	2	0,13	0,	12	0,13		-	0,13*	-	0,13*
	1000	0,16	0,		0,16	0,		0,16	0,	17	0,1		0,17	0,1	6	0,17	0,	16	0,17	0.	,16	0,17	-	0,17*
5	1200			0,19													_	0,19*						
5	1500			0,24											-	0,24								
	2000											-	(,35									•	,
	2500												(,45										
	800								2,5								-	2	2,5		-	2,5*	-	2,5*
	1000											3,1					-			•			-	3,1
1	1200											4,1											-	4,1
1	1500			5,0																				
	2000					7,1					6,7	7,	1	6,7	7,	,1	6,7	,	7,1	6,7	,	7,1	6,7	7,1
	2500													8,9	-	8,9								
*Для кл	асса точі	ности	(1)»																	-	-		-	

3.4.9 Расчетные значения сопротивлений обмоток для защиты постоянному току трансформаторов тока ТШЛ-0,66-VI-1-2 и ТШЛ-0,66-VI-1-2B, приведенные к температуре 20 °C, указаны в таблице 9.

Таблица 9

Номи- нальный	Номиналь- ный											остоянн классо					
вторич-	первичный	1		2)	2,	5	3	l	4	5	1	0	1	5	2	0
ный ток, А	ток, А	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P
5	200					0,024					_	0,031		0,031		0,031	
	250					0,0	57					0,074	-	0,074	-	0,074	-
	300							0,08				•	•	•		0,08	
	400		0,11														
	500		0,14 0,17 0.17 0.21														
	600		0,17 0,21												21		
	750		0,22														
	800									24							
	1000									30							
	1200								0,	36			•				
	200						1,11						-	1,11	_	1,11	
	250							1,37								1,37	-
	300								1,67								
	400								2,	23							
	500									79							
	600									39							
	750									24							
	800									<u>58</u>							
	1000								5.	73							

3.4.10 Расчетные значения сопротивлений обмоток для защиты постоянному току трансформаторов тока ТШЛ-0,66-VI-2-2 и ТШЛ-0,66-VI-2-2B, приведенные к температуре 20 °C, указаны в таблице 10.

Таблица 10

Номиналь- ный	Номи- нальный									и для заі ігрузке,							
вторичный	первич-		1	2	2	2,		3		4			10	1	15		20
ток, А	ный ток, А	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P
	800							0,23							-	0,23	-
	1000		0,30														
5	1200		0,36														
3	1500		0,36 0,44														
	2000								0	,50							
	2500								0	,63							
	800							4,6							-	4,6	-
	1000									5,8							
1	1200									7,1							
	1500									8,9							
	2000									10							

- 3.5 Устройство
- 3.5.1 Габаритные, установочные, присоединительные размеры и масса трансформаторов тока приведены в приложении А и Б.
- 3.5.2 Трансформаторы не имеют собственной первичной обмотки, ее роль выполняет шина или кабель распределительного устройства, проходящая через внутреннее окно трансформаторов. Главная изоляция между шиной или токопроводящими жилами кабеля и вторичной обмоткой трансформаторов обеспечивается изоляцией шины или кабеля.
- 3.5.3 В трансформаторах тока вторичные обмотки намотаны на тороидальные магнитопроводы. Каждая вторичная обмотка находится на своем магнитопроводе.
- 3.5.4 Вторичная обмотка для измерений и учета электроэнергии обозначается №1, обмотка для питания цепей защиты, автоматики, сигнализации и управления №2.
- 3.5.5 При заказе трансформаторов с нестандартным набором катушек по классам точности, назначение обмоток указано в паспорте на изделие и на табличке технических данных.
- 3.5.6 Вторичные обмотки трансформаторов залиты эпоксидным компаундом, что обеспечивает электрическую изоляцию и защиту обмоток от проникновения влаги и механических повреждений.
- 3.5.7 Выводы трансформаторов ТШЛ-0,66-VI-1-2В и ТШЛ-0,66-VI-2-2В выполнены гибкими проводами.
- 3.5.8 В литом блоке на фланце имеются 4 втулки с отверстиями, служащие для крепления трансформаторов на месте установки.
 - 3.6 Маркировка
- 3.6.1 Стороны трансформатора, соответствующие линейным выводам первичной цепи, обозначены литерой «Л1» и «Л2».

Выводы вторичной обмотки обозначены:

- «1И1» и «1И2» обмотки для измерений и «2И1» и «2И2» обмотки для защиты.
- 3.6.2 Трансформаторы имеют табличку технических данных с предупреждающей надписью по ГОСТ 12.2.007.3.

4 Эксплуатация трансформаторов

- 4.1.1 Подготовка трансформаторов к эксплуатации
- 4.1.2 При установке трансформаторов в КРУ должны быть проведены:

- удаление консервирующей смазки и очистка трансформаторов от пыли и грязи сухой ветошью, не оставляющей ворса или смоченной в уайт-спирите ГОСТ 3134;
- внешний осмотр для проверки отсутствия трещин и сколов изоляции, коррозии на металлических деталях.
- 4.1.3 Должны быть проведены испытания в объеме, установленном предприятием-изготовителем КРУ и нормативной документацией на КРУ. Методы испытаний трансформаторов должны соответствовать ГОСТ 7746.
- 4.1.4 Пломбирование выводов вторичной измерительной обмотки производится после монтажа вторичных соединений уполномоченной на это службой.
- 4.1.5 При монтаже и подключении трансформаторов следует соблюдать требования ГОСТ 10434 для контактных соединений по моменту затяжки в соответствии с таблицей 10а.

Таблица 10а

	Крутящий момен	т, Н·м
Диаметр резьбы, мм	Болтов и винтов для контактных	Болтов для крепления
	электрических соединений	трансформатора
M4	$1,2\pm0,2$	-
M6	$2,5\pm0,5$	2,5±0,5
M8	22±1,5	15±1,5
M10	30±1,5	20±1,5
M12	40±2	25±3

- 4.2 Эксплуатационные ограничения
- 4.2.1 Эксплуатация трансформаторов должна производиться в соответствии с «Правилами устройства электроустановок», «Правилами технической эксплуатации электрических станций и сетей Российской Федерации».
- 4.2.2 Наибольшее рабочее напряжение и вторичная нагрузка не должны превышать значений, указанных в 3.4.1.
- 4.2.3 Наибольший рабочий ток не должен превышать значений, указанных в 3.4.2.
- 4.2.4 Допускается кратковременное, не более 2 ч в неделю, повышение первичного тока на 20% по отношению к наибольшему рабочему первичному току.
- 4.2.5 Качество электроэнергии должно соответствовать требованиям ГОСТ 32144.

5 Поверка трансформаторов

5.1 Трансформаторы тока поверяются в соответствии с МП 59-26-2023. Интервал между поверками 8 лет. В странах СНГ межповерочный интервал в соответствии с требованиями законодательства.

6 Техническое обслуживание

- 6.1 При техническом обслуживании трансформаторов необходимо соблюдать правила раздела 2 «Требования безопасности» настоящего РЭ.
 - 6.2 При техническом обслуживании проводятся следующие работы:
 - очистка трансформаторов от пыли и грязи;
- внешний осмотр трансформаторов для проверки отсутствия на поверхности трансформаторов трещин и сколов литой изоляции;

- проверка крепления трансформаторов;
- проверка надежности контактных соединений;
- испытания, объем и нормы которых установлены РД 34.45-51-300-97, СТО 34.01-23.1-001-2017.

Методы испытаний - в соответствии с «Правилами технической эксплуатации электрических станций и сетей Российской Федерации» и с учетом дополнительных указаний настоящего РЭ.

- 6.3 Работы по техническому обслуживанию следует проводить в сроки, установленные для устройства, в котором эксплуатируются трансформаторы.
- 6.4 Указания и рекомендации по методам проведения испытаний и оценке их результатов:
- измерение сопротивления изоляции вторичной обмотки. Измерение проводится мегаомметром на 1000 В. Значение сопротивления изоляции должно быть не менее 20 МОм;
- испытание электрической прочности изоляции вторичной обмотки напряжением 3 кВ в течение 1 мин. Заземлению подлежат установочные втулки;
- измерение тока намагничивания вторичных обмоток для защиты должно производиться при значениях напряжений, указанных в таблице 11 и 12;
- расчетное значение напряжения для снятия вольт-амперной характеристики обмоток для измерения приведено в таблице 13;
- для измерения токов намагничивания к испытуемой вторичной обмотке, при разомкнутой первичной цепи, прикладывается напряжение, указанное в таблицах 11 и 12. При этом должен использоваться вольтметр эффективных значений класса точности 0,5 с входным сопротивлением не менее 10 МОм.

Таблица 11 - Расчетные значения напряжения обмоток для защиты трансформаторов ТШЛ - 0,66 – VI-1-2

	Номинальный первичный ток, А	Расчетное напряжение обмотки для защиты, В, при номинальной вторичной нагрузке, В·А, для классов точности																
вторичный ток, А		1		2		2,5		3		5		10		15		20		
IOK, A	IOK, A	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	
5	200	10		10		10		10		11	-	21 -	19		20			
	250	13		13		13		13		13		21 -		20	-	21	-	
	300	16		16		16		16		16		24		27		26		
	400	22		22		21		21		22		36		35		32		
	500	26		26		26		27		26		43		42		43		
	600	33		33		34		33		32		52		53		50		
	750	40		40		40		40		40		38		42		41		
	800	44		42		42		42		4	41		43		43		42	
	1000	54		53		53		53		54		51		5	51		51	
	1200	65		65		65		65		65		65		66		60		
	200	55		56		53		54		55		44 -		48		42		
	250	71		69		66		67		64		68		66		64 -		
	300	83		83		85		81		81		82		67		65		
	400	112		111		113		109		111		111		104		89		
1	500	142		138		139		141		137		130		126		138		
	600	166		169		170		165		168		165		16	169		166	
	750	213		212		212		207		208		208		198		198		
	800	217		219		217		212		219		215		203		203		
	1000	267		272		267		272		265		272		263		269		

Таблица 12 - Расчетные значения напряжения обмоток для защиты трансформаторов ТШЛ - 0.66 - VI-2-2

Номиналь- ный	Номинальный первичный ток, А	Расчетное напряжение обмотки для защиты, B , при номинальной вторичной нагрузке, $B \cdot A$, для классов точности															
вторичный		1		2		2,5		3		5		10		15		20	
ток, А	TOK, A	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P	10P	5P
	800		29		28		28		28		28		28		ı	30	-
5	1000	35		35		35		36		35		35		36		38	
	1200	43		42		42		43		44		43		44		47	
	1500	54		52		54		52		52		53		54		57	
	2000	54		54		55		54		56		55		60		56	
	2500	67		69		66		69		70		66		70		72	
1	800	153		156		152		159		158		162		158 -		148 -	
	1000	194		194		188		195		191		194		190		182	
	1200	225		230		230		229		232		231		228		222	
	1500	266		288		286		286		295		287		280		304	
	2000	289		293		287		286		287		275		279		263	

Таблица 13 - Расчетное значение напряжения для снятия вольт-амперной характеристики обмоток для измерения

Номинальный первичный ток, А	Класс точно- сти	Расчетное напряжение, В	Ток на- магничивания, не более, А		
200 ÷ 500	0,2S; 0,5S; 0,5	4	0,5		
600 ÷ 2500	0,2S; 0,5S; 0,5	8	0,5		

Измеренное значение тока намагничивания вторичной обмотки указывается в этикетке (паспорте) на изделие.

6.5 Трансформаторы неремонтопригодны. При несоответствии технических параметров трансформаторов настоящему РЭ, трансформаторы необходимо заменить.

7 Требования к подготовке персонала

- 7.1 При установке трансформаторов в КРУ работы должны проводиться под руководством и наблюдением ИТР рабочими, обученными выполнению необходимых операций и имеющими квалификационный разряд не ниже 3.
- 7.2 При техническом обслуживании трансформаторов и проведении их испытаний работы должны проводиться обученным персоналом, прошедшим специальную подготовку и стажировку и допущенные к проведению испытаний в действующей электроустановке.

Бригада, проводящая техническое обслуживание и испытание, должна состоять не менее чем из двух человек, из которых производитель работ должен иметь квалификационную группу по электробезопасности не ниже IV, а остальные члены бригалы - не ниже III.

8 Упаковка. Хранение

- 8.1 Консервация и упаковка трансформаторов по ГОСТ 23216.
- 8.2 Трансформаторы отправляются с предприятия-изготовителя в тарных ящиках, контейнерах или автомашинах.
- 8.3 До установки в КРУ трансформаторы должны храниться в условиях, соответствующих условиям хранения в части воздействия климатических факторов по ГОСТ 15150:
 - 2 (C) для трансформаторов климатического исполнения «У»;

- 5 (ОЖ4) для трансформаторов климатических исполнений «УХЛ»;
- 8.4 Хранение и складирование трансформаторов должны производиться в упаковке или без нее.
- 8.5 При хранении трансформаторов без упаковки должны быть приняты меры против возможных повреждений.
- 8.6 Срок защиты трансформаторов консервационной смазкой, нанесенной на предприятии изготовителе, составляет три года.

По истечении указанного срока металлические части подлежат переконсервации с предварительным удалением старой консервационной смазки. Консервацию проводить по ГОСТ 9.014 маслом К-17 ГОСТ 10877 или другим методом из предусмотренных ГОСТ 23216.

9 Транспортирование

- 9.1 Транспортирование трансформаторов возможно любым закрытым видом транспорта в условиях транспортирования Ж по ГОСТ 23216.
- 9.2 Допускается транспортирование трансформаторов без индивидуальной упаковки в контейнерах и закрытых машинах. При этом трансформаторы должны быть жестко закреплены деревянными брусками или с помощью других средств на месте установки с зазором не менее 10 мм между трансформаторами.
- 9.3 Погрузку, доставку и выгрузку трансформаторов рекомендуется производить с укрупнением грузовых мест в транспортных пакетах. Для пакетирования применять деревянные поддоны по ГОСТ 33757.
- 9.4 Требования к транспортированию трансформаторов в части воздействия климатических факторов должны соответствовать условиям хранения 5 по ГОСТ 15150.
- 9.5 При транспортировании должны быть приняты меры против возможных повреждений.
- 9.6 Транспортирование в самолетах должно проводиться в отапливаемых герметизированных отсеках.

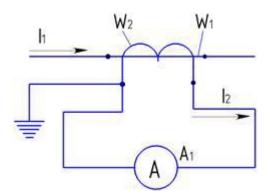
10 Утилизация

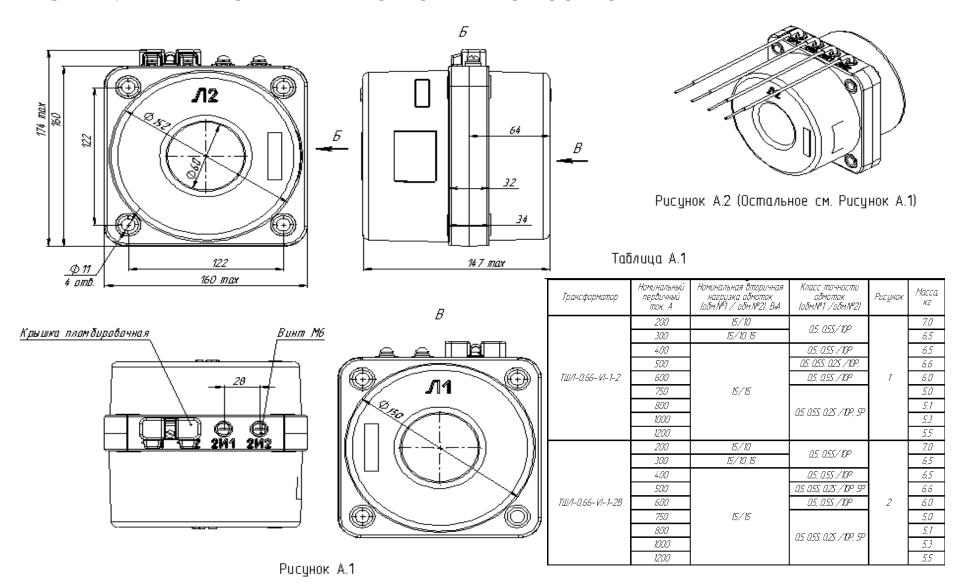
- 10.1 При транспортировании, хранении, эксплуатации, испытании и утилизации трансформаторы не представляют вреда для окружающей среды и здоровья человека.
- 10.2 После окончания срока службы трансформаторы подлежат списанию и утилизации.
 - 10.3 При утилизации должны быть выполнены следующие рекомендации:
- металлические составные части трансформаторов (медь, сталь электротехническая и конструкционная), высвобожденные механическим путем, должны быть переданы на предприятия, производящие переработку (утилизацию) цветных и черных металлов;
- фрагменты литой изоляции, электроизоляционный картон и другие изоляционные материалы, отходы упаковочной пены, не подлежащие переработке, должны быть переданы на полигон промышленных или твердых бытовых отходов для размещения;
- отходы упаковочных картона, пленки и бумаги должны быть переданы на предприятия, производящие утилизацию данных видов отходов;
- отходы упаковочной деревянной тары подлежат как утилизации, так и размещению на полигоне промышленных или твердых бытовых отходов.

11 Методика измерений

- 11.1 Схема включения трансформатора тока в электрическую цепь указана на рисунке 1, на котором приведены следующие обозначения:
 - I_1 ток первичной обмотки трансформатора тока;
 - ${\rm I}_2$ ток вторичной обмотки трансформатора тока;
 - W_1 первичная обмотка трансформатора тока;
 - W_2 вторичная обмотка трансформатора тока;
 - A_1 средство измерения.
- 11.2 Из схемы следует, что основными элементами трансформатора тока являются первичная обмотка W_1 , проходящая сквозь трансформатор и вторичная обмотка W_2 , намотанная на магнитопровод. Первичная обмотка W_1 включается в разрыв то-

копровода, через которую проходит первичный ток I_1 . Вторичный ток I_2 является измерительной информацией для подключенных ко вторичной обмотке W_2 измерительных приборов.




Рисунок 1 Трансформатор тока. Схема включения.

11.3 Ток, поступающий на подключенное к вторичной обмотке трансформатора тока устройство, определяется по формуле из соотношения:

$$I_2 = I_1 \cdot W_2 / W_1$$

Приложение А (обязательное)

Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШЛ-0,66-VI-1-2 и ТШЛ-0,66-VI-1-2В

1ΓΓ.671231.017 PЭ

Приложение Б

(обязательное)

Габаритные, установочные, присоединительные размеры и масса трансформаторов ТШЛ-0,66-VI-2-2 и ТШЛ-0,66-VI-2-2В

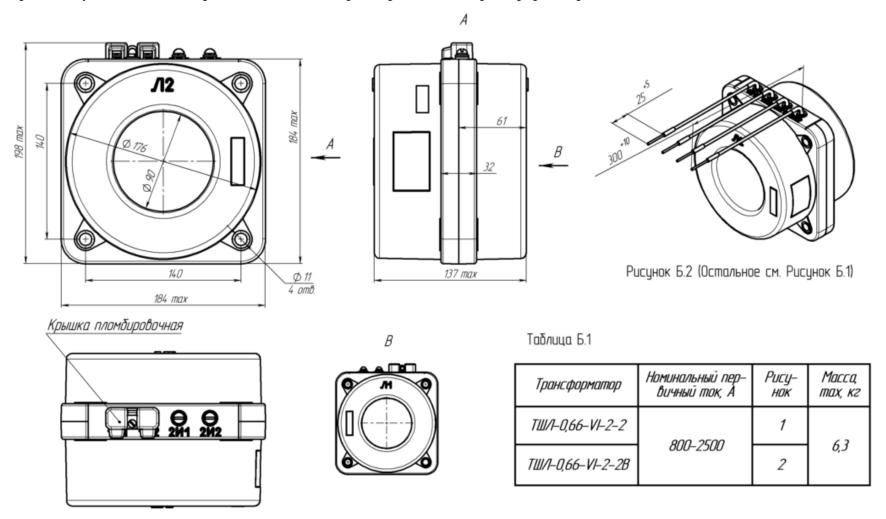


Рисунок Б.1